Playing with forcing

Marcin Sabok (Wrocław University)

Winterschool, 2 February 2009

▲□ ► < □ ► </p>

3.5

Idealized forcings

Many forcing notions arise as quotient Boolean algebras of the form $\mathbf{P}_I = \text{Bor}(X)/I$, where X is a Polish space and I is an ideal of Borel sets.

< 同 > < 国 > < 国 >

Idealized forcings

Many forcing notions arise as quotient Boolean algebras of the form $\mathbf{P}_I = \text{Bor}(X)/I$, where X is a Polish space and I is an ideal of Borel sets.

Examples

Classical examples are: Cohen forcing with the ideal of meager sets, random forcing with null sets, Miller with K_{σ} and Sacks with countable sets.

▲ □ ▶ ▲ □ ▶ ▲

The generic real

A forcing notion of the form $Bor(\omega^{\omega})/I$ adds the generic real, denoted \dot{g} and defined in the following way:

$$\llbracket \dot{g}(n) = m \rrbracket = [(n,m)]_I$$

where [(n, m)] is the basic clopen in ω^{ω}).

< /i>

The generic real

A forcing notion of the form $Bor(\omega^{\omega})/I$ adds the generic real, denoted \dot{g} and defined in the following way:

 $[\![\dot{g}(n)=m]\!]=[(n,m)]_I$

where [(n, m)] is the basic clopen in ω^{ω}).

Genericity

Of course, the generic ultrafilter can be recovered from the generic real.

< 同 > < 国 > < 国 >

Properness

As observed by Jindřich Zapletal, properness of a forcing of the form \mathbf{P}_I can be stated in the following way:

< /i>
< /i>
< /i>
< /i>
< /i>
< /i>

Properness

As observed by Jindřich Zapletal, properness of a forcing of the form \mathbf{P}_{I} can be stated in the following way:

of idealized forcing

If I is an ideal then the forcing notion \mathbf{P}_I is proper if and only if for any $M \prec H_{\kappa}$ and any condition $B \in M \cap \mathbf{P}_I$

 $\{x \in B : x \text{ is generic over } M\} \notin I.$

▲ □ ▶ ▲ □ ▶ ▲

Properness

As observed by Jindřich Zapletal, properness of a forcing of the form \mathbf{P}_{I} can be stated in the following way:

of idealized forcing

If I is an ideal then the forcing notion \mathbf{P}_I is proper if and only if for any $M \prec H_{\kappa}$ and any condition $B \in M \cap \mathbf{P}_I$

 $\{x \in B : x \text{ is generic over } M\} \notin I.$

Note that the set of generic reals over a countable model is always a Borel set.

- 4 同 ト 4 ヨ ト 4 ヨ

Borel reading of names

If a forcing notion of the form \mathbf{P}_I is proper then we have a nice reprezentation of names.

▲ 同 ▶ ▲ 三 ▶

Borel reading of names

If a forcing notion of the form \mathbf{P}_I is proper then we have a nice reprezentation of names.

Theorem (Zapletal)

If the forcing \mathbf{P}_I is proper and \dot{x} is a name for a real then for each $B \in \mathbf{P}_I$ there is $C \leqslant B$ and a Borel function $f : C \to \omega^{\omega}$ such that

$$C \Vdash \dot{x} = f(\dot{g}).$$

▲ □ ▶ ▲ □ ▶ ▲

Examples

Are there any natural examples of proper forcings P_I ?

э

< ロ > < 同 > < 三 > < 三 >

Examples

Are there any natural examples of proper forcings P_I ?

Definition

An ideal I is said to be generated by closed sets if each set $A \in I$ can be covered by an F_{σ} set in I.

▲ □ ▶ ▲ □ ▶ ▲

Examples

Are there any natural examples of proper forcings P_I ?

Definition

An ideal I is said to be generated by closed sets if each set $A \in I$ can be covered by an F_{σ} set in I.

Theorem (Zapletal)

If I is generated by closed sets then P_I is proper.

▲ □ ▶ ▲ □ ▶ ▲

▲ 同 ▶ ▲ 三 ▶ ▲

3.5

Theorem (Solecki)

If I is generated by closed sets then any analytic set A either can be covered by an F_{σ} set from I or contains a G_{δ} I-positive set.

Theorem (Solecki)

If I is generated by closed sets then any analytic set A either can be covered by an F_{σ} set from I or contains a G_{δ} I-positive set.

Using this theorem Zapletal improved Borel reading of names for ideals generated by closed sets.

Theorem (Solecki)

If I is generated by closed sets then any analytic set A either can be covered by an F_{σ} set from I or contains a G_{δ} I-positive set.

Using this theorem Zapletal improved Borel reading of names for ideals generated by closed sets.

Theorem (Zapletal)

If I is generated by closed sets then P_I has continuous reading of names.

(日)

Games

Ideals of Borel sets are often described in terms of infinite games.

イロト イヨト イヨト

æ

Games

Ideals of Borel sets are often described in terms of infinite games.

"Banach-Mazur" games

Suppose for each Borel set $A \subseteq \omega^{\omega} G(A)$ is a two player game in which Adam and Eve play natural numbers x(i). Eve wins the game if $x \in P(A)$, where P(A) is the payoff set for the game G(A).

- 4 回 ト - 4 回 ト

Games

Ideals of Borel sets are often described in terms of infinite games.

"Banach-Mazur" games

Suppose for each Borel set $A \subseteq \omega^{\omega} G(A)$ is a two player game in which Adam and Eve play natural numbers x(i). Eve wins the game if $x \in P(A)$, where P(A) is the payoff set for the game G(A).

Characterization of the ideals

We say that a game scheme as above describes ideal I if for each Borel $A \subseteq \omega^{\omega} \ A \in I$ if and only if Eve has a winning strategy in G(A).

< ロ > < 同 > < 三 > < 三 >

Example

Let ${\mathcal E}$ denote the ideal generated by closed measure zero sets in $2^\omega.$

æ

Example

Let ${\mathcal E}$ denote the ideal generated by closed measure zero sets in $2^\omega.$

A game

Consider the following game. The game is denoted by $G_{\mathcal{E}}$. It is played by Adam and Eve. In his *n*-th turn Adam picks $x_n \in 2^n$ so that $x_n \supseteq x_{n-1}$. In her *n*-th turn Eve picks a basic clopen $C_n \subseteq [x_n]$ such that its relative measure in $[x_n]$ is less than 1/n. By the end of the game a sequence $x = \bigcup_n x_n \in 2^{\omega}$ is formed. Eve wins if

either
$$x \notin A$$
 or $\forall^{\infty} n \ x \in C_n$.

Otherwise Adam wins.

- 4 回 ト - 4 回 ト

Proposition (MS)

For each $A \subseteq 2^{\omega}$ Eve has a winning strategy in $G_{\mathcal{E}}(A)$ if and only if $A \in \mathcal{E}$

Marcin Sabok (Wrocław University) Playing with forcing

イロト イボト イヨト イヨト

Proposition (MS)

For each $A \subseteq 2^{\omega}$ Eve has a winning strategy in $G_{\mathcal{E}}(A)$ if and only if $A \in \mathcal{E}$

Proof

Suppose first that Eve has a winning strategy σ in the game $G_{\mathcal{E}}(A)$. For each $s \in 2^{<\omega}$ consider a partial play in which Adam picks $s \upharpoonright k$ for $k \leq |s|$ and let C_s be the Eve's answer according to σ after this partial play. Put $E_n = \bigcup_{s \in 2^n} C_s$. Clearly E_n is a clopen set and $\mu(E_n) \leq 1/n$. Let $D_n = \bigcap_{m \geq n} E_n$. Now each D_n is a closed set of measure zero and since σ is a winning strategy we get that $A \subseteq \bigcup_n D_n$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$\mathsf{Proof} - \mathsf{cntd}$

Conversely, assume that $A \in \mathcal{E}$. So there is a sequence D_n of closed sets of measure zero such that $A \subseteq \bigcup_n D_n$. Without loss of generality assume $D_n \subseteq D_{n+1}$. Let $T_n \subseteq \omega^{<\omega}$ be a tree such that $D_n = \lim T_n$. We define the strategy σ for Eve in the following way. After Adam picks $s \in 2^n$ in his *n*-th move consider the tree $(T_n)_s$. Since $\lim_{n \to \infty} (T_n)_s$ is of measure zero there is $k < \omega$ such that

$$\frac{|(T_n)_s \cap 2^k|}{2^k} < \frac{1}{n}.$$

Let Eve's answer be the set $\bigcup_{t \in (T_n)_s \cap 2^k} [t]$. It is easy to check that this strategy is winning for Eve.

- 4 回 ト - 4 回 ト

Axiom A

Recall that a forcing notion **P** satisfies Axiom A if there is a sequence of orderings \leq_n on **P** such that $\leq_0 = \leq, \leq_{n+1} \subseteq \leq_n$ and

- if $\mathbf{P} \ni p_n$, $n < \omega$ are such that $p_{n+1} \leqslant_n p_n$ there is a $q \in \mathbf{P}$ such that $q \leqslant_n p_n$ for all n,
- for every $p \in \mathbf{P}$, for every *n* and for every ordinal name \dot{x} there exist $\mathbf{P} \ni q \leq_n p$ and a countable set *B* such that $q \Vdash \dot{x} \in B$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Axiom A

Recall that a forcing notion **P** satisfies Axiom A if there is a sequence of orderings \leq_n on **P** such that $\leq_0 = \leq, \leq_{n+1} \subseteq \leq_n$ and

- if $\mathbf{P} \ni p_n$, $n < \omega$ are such that $p_{n+1} \leqslant_n p_n$ there is a $q \in \mathbf{P}$ such that $q \leqslant_n p_n$ for all n,
- for every $p \in \mathbf{P}$, for every *n* and for every ordinal name \dot{x} there exist $\mathbf{P} \ni q \leq_n p$ and a countable set *B* such that $q \Vdash \dot{x} \in B$.

Trees

Usually, Axiom A is present when the forcing has some tree reprezentation.

Proposition (MS)

The forcing $\mathbf{P}_{\mathcal{E}}$ satisfies Axiom A.

Marcin Sabok (Wrocław University) Playing with forcing

æ

Proposition (MS)

The forcing $\mathbf{P}_{\mathcal{E}}$ satisfies Axiom A.

Proof

For each \mathcal{E} -positive Borel set B there is a strategy σ for Adam in the game $G_{\mathcal{E}}(B)$. Such a strategy can be viewed as a tree T of partial plays in $G_{\mathcal{E}}(B)$ according to σ . Let $f_T : \lim T \to B$ be the function which assignes to a run t of the game $G_{\mathcal{E}}(B)$ the real xconstructed by Adam in t. f_T is continuous and hence $A = \operatorname{rng}(f_T) \subseteq B$ is an analytic set. It is also \mathcal{E} -positive since the same strategy of Adam works for A.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proof — cntd

Let T be a tree of a strategy for Adam in the game scheme $G_{\mathcal{E}}$. We will say that T is winning for Adam if for each $t \in \lim T$ we have $\exists^{\infty} n x \notin C_n$, where x and C_n are, respectively, the real constructed by Adam and the sequence of clopens picked by Eve in t. Obviously, such a T is a winning strategy for Adam in the game $G_{\mathcal{E}}(\operatorname{rng}(f_T))$. Hence the set $\operatorname{rng}(f_T)$ is \mathcal{E} -positive. Now, let $\mathbf{T}_{\mathcal{E}}$ be the forcing of trees winning for Adam in the game scheme $G_{\mathcal{E}}$. The ordering on $\mathbf{T}_{\mathcal{E}}$ is as follows: $T_0 \leq T_1$ if

 $\operatorname{rng}(f_{\mathcal{T}_0}) \subseteq \operatorname{rng}(f_{\mathcal{T}_1}).$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proof — cntd

By Solecki (Petruska) theorem any analytic set $A \subseteq \omega^{\omega}$ either contains an \mathcal{E} -positive \mathbf{G}_{δ} set or can be covered by an \mathbf{F}_{σ} set in \mathcal{E} . Thus the forcing $\mathbf{P}_{\mathcal{E}}$ is dense in the forcing $\mathbf{Q}_{\mathcal{E}}$ of analytic \mathcal{E} -positive sets. It follows then that $\mathbf{T}_{\mathcal{E}} \ni T \mapsto \operatorname{rng}(f_T) \in \mathbf{Q}_E$ is a dense embedding. So what we get is that the three forcing notions $\mathbf{P}_{\mathcal{E}}$, $\mathbf{Q}_{\mathcal{E}}$ and $\mathbf{T}_{\mathcal{E}}$ are equivalent. We will establish Axiom A for $\mathbf{T}_{\mathcal{E}}$.

- 4 同 1 4 三 1 4 三 1

Proof — cntd

If $T \in \mathbf{T}_{\mathcal{E}}$ then each $t \in \lim T$ is a run of a game in which Adam wins. Pick $t \in \lim T$ and let x be the real constructed by Adam in t and C_n be the sequence of clopens constructed by Eve. We have that $\exists^{\infty} n \times \notin C_n$. In particular there is the least such n_0 and since C_{n_0} is a clopen, there is the least $m_0 \ge n_0$ such that $[x \upharpoonright m_0] \cap C_{n_0} = \emptyset$. Moreover, any $t' \in \lim T$ which contains $t \upharpoonright m_0$ also has this property. If we pick for each $t \in \lim T$ such an $m_0(t) \in \omega$ then the family $\{t \mid m_0(t) : t \in \lim T\}$ is an antichain and each $t \in \lim T$ extends one of its elements. We will call it the first front of the tree T and denote it by $F_1(T)$. Analogously we can define the *n*-th front of the tree T, $F_n(T)$. Note that

$$F_{n+1}(T) = \bigcup_{\tau \in F_n(T)} F_1(T_{\tau}).$$

< ロ > < 同 > < 三 > < 三 >

Proof — cntd

Now we define fusion for $\mathbf{T}_{\mathcal{E}}$. Let $T \in \mathbf{T}_{\mathcal{E}}$ and $n \in \omega$, for each $\tau \in F_n(T)$ the set $\operatorname{rng}(f_{T_{\tau}})$ is still \mathcal{E} -positive. If we substitute for T_{τ} a tree of a winning strategy for Adam in the relativized game scheme $(G_{\mathcal{E}})_{\tau}$ we will still obtain a tree in $\mathbf{T}_{\mathcal{E}}$. The same is true after substitution for all T_{τ} for $\tau \in F_n(T)$. We define \leq_n for $n < \omega$ as follows: $S \leq_n T$ if $S \supseteq F_n(T)$. Then if T_n is a fusion sequence, i.e. $T_{n+1} \leq_n T_n$ we have that $T = \bigcap_n T_n$ is a tree of a strategy for Adam and the strategy is winning because T contains infinitely many fronts. This ends the proof.

- 4 同 1 4 三 1 4 三 1

Yes, but...

OK, but what was so special in the ideal ${\mathcal E}$ so that we could establish Axiom A?

э

Yes, but...

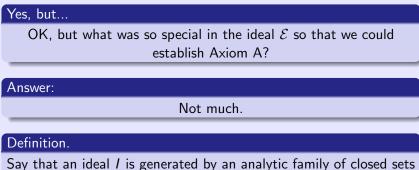
OK, but what was so special in the ideal ${\mathcal E}$ so that we could establish Axiom A?

Answer:

Not much.

Marcin Sabok (Wrocław University) Playing with forcing

Э



if there is a $\mathbf{\Sigma}_1^1$ subset $A \subseteq K(2^\omega)$ which generates *I*.

- 4 回 ト - 4 回 ト

Theorem (MS)

If I is generated by an analytic family of closed sets then the forcing \mathbf{P}_I satisfies Axiom A.

э

< ロ > < 同 > < 三 > < 三 >

Theorem (MS)

If I is generated by an analytic family of closed sets then the forcing \mathbf{P}_I satisfies Axiom A.

Proof

We begin with defining a game scheme G_I which is an "unfolded" version of a Banach-Mazur scheme, i.e. it detects whether $\pi[D] \in I$ for a closed $D \subseteq$. Pick a bijection $\rho : \omega \to \omega \times \omega$. By the theorem of Kechris, Louveau and Woodin $I \cap K(2^{\omega}) \in \mathbf{G}_{\delta}$, so let U_n be a sequence of open sets such that

$$I \cap K(2^{\omega}) = \bigcap_n U_n.$$

Let G_I be a game scheme in which Adam constructs an $x \in (2 \times \omega)^{\leq \omega}$ and Eve constructs a sequence E_n of closed sets in 2^{ω} .

$\mathsf{Proof} - \mathsf{cntd}$

In his *n*-th turn Adam can either define some next bits of x or decide to wait. In her *n*-th turn Eve picks a basic open set O_n in 2^{ω} such that if $n = \rho(k, l)$ then

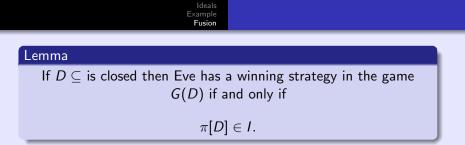
$$2^{\omega}\setminus \bigcup_{i\leqslant l}O_{\rho(i,k)}\in D_l.$$

By the end of the game they have a sequence of closed set defined $${\rm by}$$

$$E_n = 2^{\omega} \setminus \bigcup_{i < \omega} O_{\rho(i,n)}.$$

Note that each $E_n \in I$. Adam wins the game $G_I(D)$ if

$$x \in D$$
 and $\pi(x) \notin \bigcup_n E_n$.



æ

イロト イポト イヨト イヨト

Lemma

If $D \subseteq$ is closed then Eve has a winning strategy in the game G(D) if and only if

 $\pi[D] \in I.$

Proof — cntd

Let \mathbf{T}_I be the forcing of trees of a strategy for Adam that are winning. For $T_0, T_1 \in \mathbf{T}_I$ we define that $T_0 \leq T_1$ if

 $\pi[\lim T_0] \subseteq \pi[\lim T_1].$

Now $T \mapsto \pi[\lim T]$ is a dense embedding from \mathbf{T}_I to \mathbf{Q}_I and the latter contains \mathbf{P}_I as a dense subset by the Solecki theorem. Hence the forcings \mathbf{T}_I , \mathbf{Q}_I and \mathbf{P}_I are equivalent. We will establish Axiom A for \mathbf{T}_I .

Proof — cntd

For $T \in \mathbf{T}_{I}$ the winning condition says that in each game $t \in \lim T \pi(x) \notin \bigcup_{n} E_{n}$. Using a compactness argument we get that for each *n* there is some *k* such that the partial play $t \upharpoonright k$ already determines that $x \notin E_{n}$. This observation allows us to define the fronts $F_{n}(T)$ for each *n* and the rest of the proof follows the same lines as for $\mathbf{P}_{\mathcal{E}}$.

▲ □ ▶ ▲ □ ▶ ▲

The end

Thank You.

Marcin Sabok (Wrocław University) Playing with forcing

æ