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Idealized forcings

Many forcing notions arise as quotient Boolean algebras of the
form PI = Bor(X )/I , where X is a Polish space and I is an ideal of
Borel sets.

Examples

Classical examples are: Cohen forcing with the ideal of meager
sets, random forcing with null sets, Miller with Kσ and Sacks with
countable sets.
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The generic real

A forcing notion of the form Bor(ωω)/I adds the generic real,
denoted ġ and defined in the following way:

Jġ(n) = mK = [(n,m)]I

where [(n,m)] is the basic clopen in ωω).

Genericity

Of course, the generic ultrafilter can be recovered from the generic
real.
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Properness

As observed by Jinďrich Zapletal, properness of a forcing of the
form PI can be stated in the following way:

of idealized forcing

If I is an ideal then the forcing notion PI is proper if and only if for
any M ≺ Hκ and any condition B ∈ M ∩ PI

{x ∈ B : x is generic over M} /∈ I .

Note that the set of generic reals over a countable model is always
a Borel set.
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Borel reading of names

If a forcing notion of the form PI is proper then we have a nice
reprezentation of names.

Theorem (Zapletal)

If the forcing PI is proper and ẋ is a name for a real then for each
B ∈ PI there is C ¬ B and a Borel function f : C → ωω such that

C  ẋ = f (ġ).
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C  ẋ = f (ġ).
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Examples

Are there any natural examples of proper forcings PI ?

Definition

An ideal I is said to be generated by closed sets if each set A ∈ I
can be covered by an Fσ set in I .

Theorem (Zapletal)

If I is generated by closed sets then PI is proper.
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Ideals generated by closed sets are quite common in descriptive set
theory. Recall the following theorem.

Theorem (Solecki)

If I is generated by closed sets then any analytic set A either can
be covered by an Fσ set from I or contains a Gδ I -positive set.

Using this theorem Zapletal improved Borel reading of names for
ideals generated by closed sets.

Theorem (Zapletal)

If I is generated by closed sets then PI has continuous reading of
names.
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Games

Ideals of Borel sets are often described in terms of infinite games.

“Banach-Mazur” games

Suppose for each Borel set A ⊆ ωω G (A) is a two player game in
which Adam and Eve play natural numbers x(i). Eve wins the

game if x ∈ P(A), where P(A) is the payoff set for the game G (A).

Characterization of the ideals

We say that a game scheme as above describes ideal I if for each
Borel A ⊆ ωω A ∈ I if and only if Eve has a winning strategy in

G (A).
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Example

Let E denote the ideal generated by closed measure zero sets in 2ω.

A game

Consider the following game. The game is denoted by GE . It is
played by Adam and Eve. In his n-th turn Adam picks xn ∈ 2n so

that xn ⊇ xn−1. In her n-th turn Eve picks a basic clopen Cn ⊆ [xn]
such that its relative measure in [xn] is less than 1/n. By the end

of the game a sequence x =
⋃
n xn ∈ 2ω is formed. Eve wins if

either x 6∈ A or ∀∞n x ∈ Cn.

Otherwise Adam wins.
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Proposition (MS)

For each A ⊆ 2ω Eve has a winning strategy in GE(A) if and only if
A ∈ E

Proof

Suppose first that Eve has a winning strategy σ in the game
GE(A). For each s ∈ 2<ω consider a partial play in which Adam

picks s�k for k ¬ |s| and let Cs be the Eve’s answer according to σ
after this partial play. Put En =

⋃
s∈2n Cs . Clearly En is a clopen set

and µ(En) ¬ 1/n. Let Dn =
⋂
mn En. Now each Dn is a closed set

of measure zero and since σ is a winning strategy we get that
A ⊆
⋃
n Dn.
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Proof — cntd

Conversely, assume that A ∈ E . So there is a sequence Dn of
closed sets of measure zero such that A ⊆

⋃
n Dn. Without loss of

generality assume Dn ⊆ Dn+1. Let Tn ⊆ ω<ω be a tree such that
Dn = limTn. We define the strategy σ for Eve in the following

way. After Adam picks s ∈ 2n in his n-th move consider the tree
(Tn)s . Since lim(Tn)s is of measure zero there is k < ω such that

|(Tn)s ∩ 2k |
2k

<
1
n
.

Let Eve’s answer be the set
⋃
t∈(Tn)s∩2k [t]. It is easy to check that

this strategy is winning for Eve.
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Axiom A

Recall that a forcing notion P satisfies Axiom A if there is a
sequence of orderings ¬n on P such that ¬0=¬, ¬n+1⊆¬n and

if P 3 pn, n < ω are such that pn+1 ¬n pn there is a q ∈ P
such that q ¬n pn for all n,

for every p ∈ P, for every n and for every ordinal name ẋ there
exist P 3 q ¬n p and a countable set B such that q  ẋ ∈ B.

Trees

Usually, Axiom A is present when the forcing has some tree
reprezentation.
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Proposition (MS)

The forcing PE satisfies Axiom A.

Proof

For each E-positive Borel set B there is a strategy σ for Adam in
the game GE(B). Such a strategy can be viewed as a tree T of

partial plays in GE(B) according to σ. Let fT : limT → B be the
function which assignes to a run t of the game GE(B) the real x

constructed by Adam in t. fT is continuous and hence
A = rng(fT ) ⊆ B is an analytic set. It is also E-positive since the

same strategy of Adam works for A.
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Proof — cntd

Let T be a tree of a strategy for Adam in the game scheme GE .
We will say that T is winning for Adam if for each t ∈ limT we

have ∃∞n x 6∈ Cn, where x and Cn are, respectively, the real
constructed by Adam and the sequence of clopens picked by Eve in
t. Obviously, such a T is a winning strategy for Adam in the game
GE(rng(fT )). Hence the set rng(fT ) is E-positive. Now, let TE be

the forcing of trees winning for Adam in the game scheme GE . The
ordering on TE is as follows: T0 ¬ T1 if

rng(fT0) ⊆ rng(fT1).

Marcin Sabok (Wrocław University) Playing with forcing



Ideals
Example
Fusion

Proof — cntd

By Solecki (Petruska) theorem any analytic set A ⊆ ωω either
contains an E-positive Gδ set or can be covered by an Fσ set in E .

Thus the forcing PE is dense in the forcing QE of analytic
E-positive sets. It follows then that TE 3 T 7→ rng(fT ) ∈ QE is a

dense embedding. So what we get is that the three forcing notions
PE , QE and TE are equivalent. We will establish Axiom A for TE .
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Proof — cntd

If T ∈ TE then each t ∈ limT is a run of a game in which Adam
wins. Pick t ∈ limT and let x be the real constructed by Adam in
t and Cn be the sequence of clopens constructed by Eve. We have
that ∃∞n x 6∈ Cn. In particular there is the least such n0 and since

Cn0 is a clopen, there is the least m0  n0 such that
[x�m0] ∩ Cn0 = ∅. Moreover, any t ′ ∈ limT which contains t�m0

also has this property. If we pick for each t ∈ limT such an
m0(t) ∈ ω then the family {t�m0(t) : t ∈ limT} is an antichain

and each t ∈ limT extends one of its elements. We will call it the
first front of the tree T and denote it by F1(T ). Analogously we

can define the n-th front of the tree T , Fn(T ). Note that

Fn+1(T ) =
⋃

τ∈Fn(T )

F1(Tτ ).
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Proof — cntd

Now we define fusion for TE . Let T ∈ TE and n ∈ ω, for each
τ ∈ Fn(T ) the set rng(fTτ ) is still E-positive. If we substitute for
Tτ a tree of a winning strategy for Adam in the relativized game
scheme (GE)τ we will still obtain a tree in TE . The same is true

after substitution for all Tτ for τ ∈ Fn(T ). We define ¬n for n < ω
as follows: S ¬n T if S ⊇ Fn(T ). Then if Tn is a fusion sequence,
i.e. Tn+1 ¬n Tn we have that T =

⋂
n Tn is a tree of a strategy for

Adam and the strategy is winning because T contains infinitely
many fronts. This ends the proof.
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Yes, but...

OK, but what was so special in the ideal E so that we could
establish Axiom A?

Answer:

Not much.

Definition.

Say that an ideal I is generated by an analytic family of closed sets
if there is a Σ11 subset A ⊆ K (2ω) which generates I .
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Theorem (MS)

If I is generated by an analytic family of closed sets then the
forcing PI satisfies Axiom A.

Proof

We begin with defining a game scheme GI which is an “unfolded”
version of a Banach-Mazur scheme, i.e. it detects whether

π[D] ∈ I for a closed D ⊆. Pick a bijection ρ : ω → ω × ω. By the
theorem of Kechris, Louveau and Woodin I ∩ K (2ω) ∈ Gδ, so let

Un be a sequence of open sets such that

I ∩ K (2ω) =
⋂
n
Un.

Let GI be a game scheme in which Adam constructs an
x ∈ (2× ω)¬ω and Eve constructs a sequence En of closed sets in

2ω.
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Proof — cntd

In his n-th turn Adam can either define some next bits of x or
decide to wait. In her n-th turn Eve picks a basic open set On in

2ω such that if n = ρ(k, l) then

2ω \
⋃
i¬l
Oρ(i ,k) ∈ Dl .

By the end of the game they have a sequence of closed set defined
by

En = 2ω \
⋃
i<ω

Oρ(i ,n).

Note that each En ∈ I . Adam wins the game GI (D) if

x ∈ D and π(x) 6∈
⋃
n
En.

Otherwise Eve wins the game.Marcin Sabok (Wrocław University) Playing with forcing
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Lemma

If D ⊆ is closed then Eve has a winning strategy in the game
G (D) if and only if

π[D] ∈ I .

Proof — cntd

Let TI be the forcing of trees of a strategy for Adam that are
winning. For T0,T1 ∈ TI we define that T0 ¬ T1 if

π[limT0] ⊆ π[limT1].

Now T 7→ π[limT ] is a dense embedding from TI to QI and the
latter contains PI as a dense subset by the Solecki theorem. Hence
the forcings TI , QI and PI are equivalent. We will establish Axiom

A for TI .

Marcin Sabok (Wrocław University) Playing with forcing



Ideals
Example
Fusion

Lemma

If D ⊆ is closed then Eve has a winning strategy in the game
G (D) if and only if

π[D] ∈ I .

Proof — cntd

Let TI be the forcing of trees of a strategy for Adam that are
winning. For T0,T1 ∈ TI we define that T0 ¬ T1 if

π[limT0] ⊆ π[limT1].

Now T 7→ π[limT ] is a dense embedding from TI to QI and the
latter contains PI as a dense subset by the Solecki theorem. Hence
the forcings TI , QI and PI are equivalent. We will establish Axiom

A for TI .

Marcin Sabok (Wrocław University) Playing with forcing



Ideals
Example
Fusion

Proof — cntd

For T ∈ TI the winning condition says that in each game
t ∈ limT π(x) 6∈

⋃
n En. Using a compactness argument we get

that for each n there is some k such that the partial play t�k
already determines that x 6∈ En. This observation allows us to

define the fronts Fn(T ) for each n and the rest of the proof follows
the same lines as for PE .
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The end

Thank You.
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